3.299 \(\int (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^5(c+d x) \, dx\)

Optimal. Leaf size=97 \[ \frac {(3 A+4 C) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac {(3 A+4 C) \tan (c+d x) \sec (c+d x)}{8 d}+\frac {A \tan (c+d x) \sec ^3(c+d x)}{4 d}+\frac {B \tan ^3(c+d x)}{3 d}+\frac {B \tan (c+d x)}{d} \]

[Out]

1/8*(3*A+4*C)*arctanh(sin(d*x+c))/d+B*tan(d*x+c)/d+1/8*(3*A+4*C)*sec(d*x+c)*tan(d*x+c)/d+1/4*A*sec(d*x+c)^3*ta
n(d*x+c)/d+1/3*B*tan(d*x+c)^3/d

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 97, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {3021, 2748, 3767, 3768, 3770} \[ \frac {(3 A+4 C) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac {(3 A+4 C) \tan (c+d x) \sec (c+d x)}{8 d}+\frac {A \tan (c+d x) \sec ^3(c+d x)}{4 d}+\frac {B \tan ^3(c+d x)}{3 d}+\frac {B \tan (c+d x)}{d} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^5,x]

[Out]

((3*A + 4*C)*ArcTanh[Sin[c + d*x]])/(8*d) + (B*Tan[c + d*x])/d + ((3*A + 4*C)*Sec[c + d*x]*Tan[c + d*x])/(8*d)
 + (A*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + (B*Tan[c + d*x]^3)/(3*d)

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx &=\frac {A \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {1}{4} \int (4 B+(3 A+4 C) \cos (c+d x)) \sec ^4(c+d x) \, dx\\ &=\frac {A \sec ^3(c+d x) \tan (c+d x)}{4 d}+B \int \sec ^4(c+d x) \, dx+\frac {1}{4} (3 A+4 C) \int \sec ^3(c+d x) \, dx\\ &=\frac {(3 A+4 C) \sec (c+d x) \tan (c+d x)}{8 d}+\frac {A \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {1}{8} (3 A+4 C) \int \sec (c+d x) \, dx-\frac {B \operatorname {Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (c+d x)\right )}{d}\\ &=\frac {(3 A+4 C) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac {B \tan (c+d x)}{d}+\frac {(3 A+4 C) \sec (c+d x) \tan (c+d x)}{8 d}+\frac {A \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {B \tan ^3(c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.27, size = 71, normalized size = 0.73 \[ \frac {\tan (c+d x) \left (3 (3 A+4 C) \sec (c+d x)+6 A \sec ^3(c+d x)+8 B \left (\tan ^2(c+d x)+3\right )\right )+3 (3 A+4 C) \tanh ^{-1}(\sin (c+d x))}{24 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^5,x]

[Out]

(3*(3*A + 4*C)*ArcTanh[Sin[c + d*x]] + Tan[c + d*x]*(3*(3*A + 4*C)*Sec[c + d*x] + 6*A*Sec[c + d*x]^3 + 8*B*(3
+ Tan[c + d*x]^2)))/(24*d)

________________________________________________________________________________________

fricas [A]  time = 0.43, size = 117, normalized size = 1.21 \[ \frac {3 \, {\left (3 \, A + 4 \, C\right )} \cos \left (d x + c\right )^{4} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (3 \, A + 4 \, C\right )} \cos \left (d x + c\right )^{4} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (16 \, B \cos \left (d x + c\right )^{3} + 3 \, {\left (3 \, A + 4 \, C\right )} \cos \left (d x + c\right )^{2} + 8 \, B \cos \left (d x + c\right ) + 6 \, A\right )} \sin \left (d x + c\right )}{48 \, d \cos \left (d x + c\right )^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="fricas")

[Out]

1/48*(3*(3*A + 4*C)*cos(d*x + c)^4*log(sin(d*x + c) + 1) - 3*(3*A + 4*C)*cos(d*x + c)^4*log(-sin(d*x + c) + 1)
 + 2*(16*B*cos(d*x + c)^3 + 3*(3*A + 4*C)*cos(d*x + c)^2 + 8*B*cos(d*x + c) + 6*A)*sin(d*x + c))/(d*cos(d*x +
c)^4)

________________________________________________________________________________________

giac [B]  time = 0.46, size = 230, normalized size = 2.37 \[ \frac {3 \, {\left (3 \, A + 4 \, C\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, {\left (3 \, A + 4 \, C\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + \frac {2 \, {\left (15 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 24 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 12 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 9 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 40 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 12 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 9 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 40 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 12 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 15 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 24 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 12 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{4}}}{24 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="giac")

[Out]

1/24*(3*(3*A + 4*C)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(3*A + 4*C)*log(abs(tan(1/2*d*x + 1/2*c) - 1)) + 2*
(15*A*tan(1/2*d*x + 1/2*c)^7 - 24*B*tan(1/2*d*x + 1/2*c)^7 + 12*C*tan(1/2*d*x + 1/2*c)^7 + 9*A*tan(1/2*d*x + 1
/2*c)^5 + 40*B*tan(1/2*d*x + 1/2*c)^5 - 12*C*tan(1/2*d*x + 1/2*c)^5 + 9*A*tan(1/2*d*x + 1/2*c)^3 - 40*B*tan(1/
2*d*x + 1/2*c)^3 - 12*C*tan(1/2*d*x + 1/2*c)^3 + 15*A*tan(1/2*d*x + 1/2*c) + 24*B*tan(1/2*d*x + 1/2*c) + 12*C*
tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^4)/d

________________________________________________________________________________________

maple [A]  time = 0.30, size = 130, normalized size = 1.34 \[ \frac {A \left (\sec ^{3}\left (d x +c \right )\right ) \tan \left (d x +c \right )}{4 d}+\frac {3 A \sec \left (d x +c \right ) \tan \left (d x +c \right )}{8 d}+\frac {3 A \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8 d}+\frac {2 B \tan \left (d x +c \right )}{3 d}+\frac {B \tan \left (d x +c \right ) \left (\sec ^{2}\left (d x +c \right )\right )}{3 d}+\frac {C \tan \left (d x +c \right ) \sec \left (d x +c \right )}{2 d}+\frac {C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2 d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x)

[Out]

1/4*A*sec(d*x+c)^3*tan(d*x+c)/d+3/8*A*sec(d*x+c)*tan(d*x+c)/d+3/8/d*A*ln(sec(d*x+c)+tan(d*x+c))+2/3*B*tan(d*x+
c)/d+1/3/d*B*tan(d*x+c)*sec(d*x+c)^2+1/2/d*C*tan(d*x+c)*sec(d*x+c)+1/2/d*C*ln(sec(d*x+c)+tan(d*x+c))

________________________________________________________________________________________

maxima [A]  time = 0.34, size = 139, normalized size = 1.43 \[ \frac {16 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} B - 3 \, A {\left (\frac {2 \, {\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 12 \, C {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )}}{48 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="maxima")

[Out]

1/48*(16*(tan(d*x + c)^3 + 3*tan(d*x + c))*B - 3*A*(2*(3*sin(d*x + c)^3 - 5*sin(d*x + c))/(sin(d*x + c)^4 - 2*
sin(d*x + c)^2 + 1) - 3*log(sin(d*x + c) + 1) + 3*log(sin(d*x + c) - 1)) - 12*C*(2*sin(d*x + c)/(sin(d*x + c)^
2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)))/d

________________________________________________________________________________________

mupad [B]  time = 3.56, size = 160, normalized size = 1.65 \[ \frac {\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (\frac {3\,A}{4}+C\right )}{d}+\frac {\left (\frac {5\,A}{4}-2\,B+C\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\left (\frac {3\,A}{4}+\frac {10\,B}{3}-C\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (\frac {3\,A}{4}-\frac {10\,B}{3}-C\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (\frac {5\,A}{4}+2\,B+C\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/cos(c + d*x)^5,x)

[Out]

(atanh(tan(c/2 + (d*x)/2))*((3*A)/4 + C))/d + (tan(c/2 + (d*x)/2)*((5*A)/4 + 2*B + C) + tan(c/2 + (d*x)/2)^7*(
(5*A)/4 - 2*B + C) - tan(c/2 + (d*x)/2)^3*((10*B)/3 - (3*A)/4 + C) + tan(c/2 + (d*x)/2)^5*((3*A)/4 + (10*B)/3
- C))/(d*(6*tan(c/2 + (d*x)/2)^4 - 4*tan(c/2 + (d*x)/2)^2 - 4*tan(c/2 + (d*x)/2)^6 + tan(c/2 + (d*x)/2)^8 + 1)
)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**5,x)

[Out]

Timed out

________________________________________________________________________________________